Fiche méthode : Calculer la valeur de la vitesse à l'aide d'un tableur à partir de mesures réalisées avec Aviméca

Ce calcul s'effectue après avoir transféré dans un tableur les coordonnées au cours du temps d'un pont M d'un solide en mouvement, obtenues à partir d'un pointage vidéo.

Avec Excel®

Détermination de la valeur de la vitesse :

Pour déterminer la vitesse en un point M_i à la date t_i , il faut utiliser les positions M_{i-1} et M_{i+1} , occupées par le point M aux dates t_{i-1} et t_{i+1} .

La distance parcourue sur la trajectoire entre les positions M_{i-1} et M_{i+1} peut être considérée égale à la distance $d(M_{i-1}M_{i+1}) = \sqrt{(x_{i+1}-x_{i-1})^2 + (y_{i+1}-y_{i-1})^2}$.

La vitesse v_i se calcule alors en divisant cette distance par l'intervalle de temps séparant le passage par ces deux positions, soit :

$$v_{i} = \frac{d(M_{i-1}M_{i+1})}{(t_{i+1} - t_{i-1})} = \frac{\sqrt{(x_{i+1} - x_{i-1})^{2} + (y_{i+1} - y_{i-1})^{2}}}{(t_{i+1} - t_{i-1})}$$

Introduction de la relation dans le tableur

25	-	:	×	✓ fr	=1		86-B4)^	2+(C6-C4)	^2)/(<u>A6-A4</u>)	
				• Ja	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		
	A		В	C		D		E	F	
1	Pointages AviMéca									
)	t	x		У		v				
8	s	m		m		m/s				
ŀ	0,2		0,31	0	,53					
5	0,24		0,39	0	,67	=RACINE	((B6-B4)^2+(C6-C	(4)^2)/(A6-A	4
5	0,28		0,47	0	,79					
7	0,32		0,55 (,91					
•										
D	ointogoo	۸.,	iMáca							
Г	onnages	٨v	livieca							
t			х		у			v		
s			m		m	1		m/s		
	(),2		0,31			0,53			
	0,	24		0,39			0,67		3,82	
	0,	28		0,47			0,79		3,61	

0,91

Il est possible de calculer la vitesse dans la colonne D. Pour cela, à partir de la cellule D3, écrire la relation en commençant par le signe « = ».

Il suffit ensuite de « copier glisser » le contenu de la cellule contenant la formule pour l'étendre à toute la colonne.

Avec Régressi®

0,32

A partir des coordonnées x et y du point M à chaque instant, on définit les composantes v_x et v_y de la vitesse v à chaque date t_i par les relations suivantes :

A la date
$$t_i$$
: $v_x = \frac{x_{i+1} - x_{i-1}}{t_{i+1} - t_{i-1}}$ et $v_y = \frac{y_{i+1} - y_{i-1}}{t_{i+1} - t_{i-1}}$ Soit $v = \sqrt{v_x^2 + v_y^2}$

0,55

Aller dans Grandeurs, onglet Expressions. Définir la composante horizontale de la vitesse v_x , de la composante verticale de la vitesse v_y et la norme v de la vitesse grâce aux expressions ci-dessous. Toutes ces grandeurs sont en m/s.

() **A** = i Npoints [i] [i+1]

(i-1) t x y m

g vx vy v

Cliquer sur Mise à jour et vérifier que dans l'onglet Tableau les 3 variables apparaissent.

On peut ensuite afficher la courbe de la vitesse en fonction du temps. Voir Fiche méthode Utiliser le logiciel Régressi